Approximation of the inductionless MHD problem using a stabilized finite element method
نویسندگان
چکیده
In this work, a stabilized formulation to solve the inductionless magnetohydrodynamic (MHD) problem using the finite element (FE) method is presented. The MHD problem couples the Navier-Stokes and a Darcy-type problem for the electric potential via Lorentz’s force in the momentum equation of the Navier-Stokes equations and the currents generated by the moving fluid in Ohm’s law. The key feature of the FE formulation resides in the design of the stabilization terms, which serve several purposes. First, the formulation is suitable for convection dominated flows. Second, there is no need to use interpolation spaces constrained to an inf-sup condition in both problems and therefore, equal-order interpolation spaces can be used for all the unknowns. Finally, this formulation leads to a coupled linear system; this monolithic approach is effective, since the coupling can be dealt by effective preconditioning and iterative solvers.
منابع مشابه
Optimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملApproximation of the thermally coupled MHD problem using a stabilized finite element method
In this paper we present a numerical formulation to solve thermally coupled MHD flows. It is a stabilized finite element method, whose design is based on splitting the unknown into a finite element component and a subscale and on giving an approximation for the latter. The main features of the formulation are that it allows to use equal interpolation for all the unknowns and it is stable and op...
متن کاملGeometrically nonlinear analysis of axially functionally graded beams by using finite element method
The aim of this paper is to investigate geometrically nonlinear static analysis of axially functionally graded cantilever beam subjected to transversal non follower load. The considered problem is solved by finite element method with total Lagrangian kinematic approach. The material properties of the beam vary along the longitudinal direction according to the power law function. The finite elem...
متن کاملAn Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements
In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...
متن کاملAn adaptive finite element method for magnetohydrodynamics
We describe a procedure for the adaptive h-refinement solution of the incompressible MHD equations in stream function form using a stabilized finite element formulation. The mesh is adapted based on a posteriori spatial error estimates of the magnetic field using both recovery and order extrapolation techniques. The step size for time integration is chosen so that temporal discretization errors...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011